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ABSTRACT

Band selection, as an effective and popular dimensional re-
duction methods for hyperspectral image (HSI), has raised
wide attention in recent years. In this paper, we propose
a novel band selection method called optimal neighboring
reconstruction (ONR). Compared to conventional methods,
ONR mainly has following advantages. 1) It is globally opti-
mal, which means the best combination of bands towards the
designed objective function can be achieved. 2) It sufficiently
exploits the neighboring structure among bands, so can effec-
tively reduce the redundancy while maintaining the discrimi-
nation among bands. Experiments on three real data sets show
that the proposed method has excellent performance.

Index Terms— Band selection, hyperspectral image, dy-
namic programming, global optimal.

1. INTRODUCTION

Hyperspectral image (HSI) records the reflectance of a spe-
cific scene to electromagnetic waves in different wavelengths.
Owe to the abundant spectral information contained in HSI, a
more accurate and specific description of the ground objects
can be obtained and applied to various applications [1, 2]. N-
evertheless, the high dimension in spectral domain also raises
challenges in different aspects such as data storage and pro-
cessing. To tackle this problem, band selection is proposed as
a dimensional reduction technique which aims to select a few
of discriminative and low-corrected bands to represent the o-
riginal data set. According to the use of the labeled samples,
band selection can be briefly categorized into supervised and
unsupervised methods. Since the acquisition of the labeled
samples is usually hard for HSI, the unsupervised methods
are more practical in real applications.

According to the employed searching strategy [3], unsu-
pervised band selection can be further divided into ranking-
based, clustering-based, greedy-based and evolutionary-
based methods [3]. Specifically, ranking-based methods

[4] first assign each band a rank value and select the top-rank
bands individually. Clustering-based methods [5] consist of
two stages. They first sperate the bands into clusters, and then
select the most representative bands in each of them. Greedy-
based methods [6] are multi-stage procedure. In each stage
the current optimal band is selected. Evolutionary-based
methods [7] are one-stage procedure. They first generate a
random band combination with desired number of bands, and
repeatedly update it through some evolutionary algorithms.

In this paper, a novel method called optimal neighboring
reconstruction (ONR) is proposed. Compared to the above
mentioned four kinds of methods, ONR is much more dif-
ferent. First, it is global optimal towards the defined ob-
jective function, which means it is not based on some ap-
proximate algorithms like what greedy-based or evolutionary-
based methods do. Second, it is one-stage and also without
pre-processing like clustering-based methods. Hence it is ex-
pected to be more robust against different data sets.

The main contributions of this paper are claimed as fol-
low.

1) A effective objective function is proposed in a novel
point of view. With consideration of the characteristic that
bands with closer wavelengths have stronger correlation [8],
a neighboring reconstruction based criterion is presented to
evaluate the ability that a certain band subset can linearly re-
construct the original data set.

2) An efficient searching strategy is applied to obtain the
optimal band subset towards the proposed criterion. Unlike
the previous works which are based on approximate algo-
rithms, dynamic programming [9] is utilized to achieve the
global optimal solution.

2. OPTIMAL NEIGHBORING RECONSTRUCTION

This section details the proposed ONR method. First, the pro-
posed objective function is introduced. Second, the optimiza-
tion method to achieve the global optimum is given.



2.1. OBJECTIVE FUNCTION

Before the introduction of the objective function, we give
some notations that will be used throughout the paper. For
an arbitrary matrix M , Mi,j is its (i, j)th entry, M i is its ith
row and Mj is its jth column. Denote all the band vectors
in a HSI as a matrix X = [X1, X2, ..., Xd] ∈ Rn×d, where
Xj is the jth band with l2 norm normalized to 1, n is the
number of pixels in each band and d is the number of bands.
The indexes of the selected bands are specified by a vector
b = (b1, b2, ..., bm)T , in which m represents the number of
the selected bands.

See from the view of linear algebra, band selection can be
regarded as a problem to select a serious of bands which can
linearly reconstruct the original data set with minimal loss:

min
b,W

‖E‖ s.t. X = [Xb1 , Xb2 , ...Xbm ]W + E. (1)

Here ‖·‖ is a matrix norm, W ∈ Rm×d is the coefficient ma-
trix, and E is the reconstruction error matrix. The proposed
objective function is raised based on Eq. (1) with two con-
cerns, i.e., noise reduction and neighboring reconstruction.

1) Noise reduction. A common choice of ‖·‖ is the l2,1
norm, which is defined as ‖E‖2,1 =

∑d
j=1

√∑n
i=1Eij . By

the use of l2,1 norm, Eq. (1) can be rewritten as:

min
b,W

d∑
j=1

‖Ej‖2,

s.t. X = [Xb1 , Xb2 , ...Xbm ]W + E.

(2)

Nevertheless, noisy bands are always hard to be reconstructed
and with large error ‖Ej‖2. In order to reduced the effect of
noisy bands, we expect that there is a upper bound τ to ‖Ej‖2,
i.e., if the value of ‖Ej‖2 is larger than τ , than it will be set
to τ . Motivated by this, Eq. (2) is changed to:

min
b,W

d∑
j=1

fτ (‖Ej‖2),

s.t. X = [Xb1 , Xb2 , ...Xbm ]W + E,

(3)

where fτ is defined as:

fτ (x) =

{
x, x ≤ τ,
τ, x > τ.

(4)

2) Neighboring reconstruction. As stated in our previ-
ous work [8], strong correlation mainly exists between band-
s with close indexes. Hence the above linear reconstruction
problem is expected to be with two attributes. One is that
the coefficient matrix W should be sparse in column, since
only few bands have strong correlation with a specific band.

Another is that one band should be reconstructed by its neigh-
bors, since they have the largest correlation with it.

A extreme case which can satisfy the above two attributes
is that each band Xj is reconstructed by two of its nearest
neighbors Xbk and Xbk+1

, where bk ≤ j < bk+1. More
specifically, when b is fixed, the reconstruction of Xj can be
formulated as:

min
Zj

fτ (‖Ej‖2), (5)

s.t. Xj = [Xbk , Xbk+1
]Zj + Ej ,

bk ≤ j < bk+1.

where Z ∈ R2×d is a coefficient matrix that records the
nonzero elements inW . In special cases, if j < b1 or j > bm,
Xj will be reconstructed only by Xb1 or Xbm , since there is
no available k subject to bk ≤ j < bk+1. To achieve a united
form of objective function, we set b0 = 0, bm+1 = d+ 1 and
X0 = Xd+1 = 0.

Summing up the above considerations, the final objective
function is given as:

min
b,Z

d∑
j=1

fτ (‖Ej‖2),

s.t. ∀j, Xj = [Xbk , Xbk+1
]Zj + Ej ,

bk ≤ j < bk+1.

(6)

2.2. OPTIMIZATION METHOD

Eq. (6) is not easy to be solved via traditional machine learn-
ing methods since it is a combinatorial optimization problem
with respect to b. Here we present a special solution to Eq.
(6) as follows.

We first define a notation Ll,r as the loss when recon-
structing [Xl+1, Xl+2..., Xr−1] using [Xl, Xr]:

Ll,r =

r−1∑
j=l+1

min
Zj

fτ (‖Ej‖2),

s.t. ∀j, Xj = [Xl, Xr]Zj + Ej .

(7)

Then Eq. (6) can be reformulated as:

min
b

m∑
k=0

Lbk,bk+1
. (8)

Since now, the original problem is converted to a linearly re-
construction problem as in Eq. (7) and a combinatorial opti-
mization problem as in Eq. (8).

1) Solution to Eq. (7). If fτ is not employed, Eq. (7) is
a linear least square problem, whose minimum norm solution
is given as:

Z∗
j = ([Xl, Xr]

T [Xl, Xr])
−1[Xl, Xr]

TXj

Ll,r =

r−1∑
j=l+1

‖Xj − [Xl, Xr]Z
∗
j ‖2

(9)



In fact, Eq. (9) is also one of the solution to Eq. (7) since fτ
is monotonically increasing.

2) Solution to Eq. (8). Eq. (8) can be solved via dynamic
programming [8]. We first define an auxiliary variable D as:

Di,j = min
b1,b2,...,bj−1

j−1∑
k=0

Lbk,bk+1
, s.t. bj = i, (10)

in which 1 ≤ j ≤ i ≤ d + 1. It is easy to see the solution of
Eq. (8) is equal to Dd+1,m+1. Moreover when j > 1, there
is:

min
b1,b2,...,bj−1

j−1∑
k=0

Lbk,bk+1

= min
bj−1

min
b1,b2...bj−2

j−2∑
k=0

Lbk,bk+1
+ Lbj−1,bj

= min
bj−1

Dbj−1,j−1 + Lbj−1,bj

= min
j−1≤q<bj

Dq,j−1 + Lq,bj ,

(11)

which shows that there is a recursive relation among Di,j :

Di,j = min
j−1≤q<i

Dq,j−1 + Lq,bj . (12)

Specifically when j = 1, we have Di,1 = L0,i. Hence all the
Di,j can be obtained recursively according to Eq. (12). Once
Dd+1,m+1 is obtained, we need to get the optimal indexes
of bands b∗ = (b∗1, b

∗
2, ..., b

∗
m)T corresponding to it. From

Eq. (11), it can be inferred that b∗j is just the argument which
maximize Db∗j+1,j+1:

b∗j = argmin
j≤q<b∗j+1

Dq,j + Lq,b∗j+1
, (13)

where b∗m+1 = d+1. Therefore b∗ can be obtained based on
Eq. (13).

In summary, the algorithm to optimize the objective func-
tion is shown in Algorithm 1.

Algorithm 1 Optimal Neighboring Reconstruction
Input: All bandsX = [X1, X2, ..., Xd], number of bandsm.

1: Get Ll,r for each 0 ≤ l < r ≤ d+1 according to Eq. (9).
2: Set Di,1 ← L0,i for each 1 ≤ i ≤ m+ 1.
3: for j ← 2 to m+ 1 do
4: for i← j to d+ 1 do
5: Get Di,j according to Eq. (12).
6: end for
7: end for
8: Get b∗ = (b∗1, b

∗
2, ..., b

∗
m)T according to Eq. (13).

Output: The indexes of m selected bands b1, b2, ..., bm.

3. EXPERIMENT

In this section, the proposed ONR method is compared with
some state-of-the-art methods via classification experiments.
First, the experimental setup is introduced. Then the exper-
imental results are shown and some deep some analyses are
given.

3.1. EXPERIMENT SETUP

The setup of the experiment includes data sets, comparison
methods, classification settings and parameter settings.

1) Data sets. Two data sets named Indian Pines and Sali-
nas are employed in this paper. One can find their description
in [10].

2) Comparison methods. The comparison methods in-
clude WaLuDi [5], VGBS [6], UBS [4], E-FDPC [11] and
MTSP [7].

3) Classification settings. Four popular classifiers are
employed in the experiments. They are k-nearest neighbor-
hood (KNN), linear discriminant analysis (LDA), support
vector machine (SVM) and classification and regression trees
(CART). 10% of the samples for each classes are chosen
randomly to train the classifiers, while the rest are used in
testing.

4) Parameter settings. About the parameters of the com-
parison methods, the only parameter for WaLuDi, VGBS,
UBS and E-FDPC is the number of selected bands m. For
MTSP, its parameters are tuned on Indian Pines and fixed
when moving to Salinas. The parameter τ of ONR is set ac-
cording to the following steps: 1) Sort all the elements in Ll,r
for each 1 ≤ l < r ≤ d in descending order. Denote the
result as L̃. 2) Estimate the ratio of noisy bands to the w-
hole bands γ. 3) Then τ is set to the rth element in L̃, where
r = C3

d − C3
d′

and d
′
= bd · γc. Here C is the combinatorial

number. Finally γ is set to 0.5 for both data sets empirically.

3.2. EXPERIMENT RESULT

The overall accuracies of the comparison methods and ONR
are shown in Fig. 1 and Fig. 2 for Indian Pines and Sali-
nas respectively. From Fig. 1, one can observe that the pro-
posed ONR method achieves significant superiority compared
to others when SVM, LDA and CART are employed. When
KNN is utilized, both ONR and MTSP have promising perfor-
mance. When referring to Fig. 2, ONR also has satisfactory
performance. When LDA is employed, ONR dominates the
others and rank the first. When using KNN or CART, ON-
R and E-FDPC both acquire good performance. While on
SVM, ONR and VGBS outperform the others. The above re-
sults prove that the proposed method has robust performance
against different classifiers and data sets.

Some interesting conclusions can be made based on the
promising experiment results. 1) The neighboring reconstruc-
tion strategy can better exploit the intrinsic data structure of



HSI. 2) The utilized function fτ can effectively help to re-
duce the influence of noisy bands. 3) The employed dynamic
programming based optimization method is more powerful
compared to traditional methods.
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Fig. 1. OA curves on Indian Pines Scene for different band
selection methods, in which m is set from 3 to 30 each 3
intervals.

4. CONCLUSION

In this paper, we present an optimal neighboring reconstruc-
tion (ONR) method to select the discriminative bands in HSI
data set. We first develop a objective function which can ful-
ly exploit the neighboring structure of HSI, while minimizing
the influence of noisy bands. Then a dynamic programming
based method is employed to optimize the above objective
function, through which the global optimal solution can be
obtained. The proposed method is demonstrated to be effec-
tive according to the classification experiments on two real
HSI data sets.
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